
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on blong@compuserve.com

or write/fax us at The Delphi Magazine

SDI Menu Problems

QIf I make an SDI application
with menus on several

forms, I seem to walk into a prob-
lem. If I try and choose a menu item
(using the keyboard) the keystroke
is sent to the main form. For exam-
ple, if I try and bring down my Font
menu on a form other than the
main form, the main form’s File
menu drops down. I can see that
Delphi itself takes advantage of this
so that from the form designer you
can pull down the main form’s
menus, but I want extra menus and
I want them to work.

AIn investigating this problem
I have come across a number

of aspects to it. Firstly, your cur-
rent applications’ menus can be ac-
cessed via the keyboard if you do
things one keystroke at a time. In
other words, instead of pressing
Alt-F, press Alt then press F sepa-
rately. Also, the problem doesn’t
occur if the secondary form has no
controls on it. Lastly, this was
clearly a bug since Delphi 3 fixes it.

The problem occurs because
code in the VCL tries to make SDI
applications operate rather like
MDI applications in general use. In
other words, close the main form
and the whole application closes,
press a menu keystroke on a non-
main-form and the main form’s
menu comes to life and so on.
However, the coding in Delphi 1
and 2 was a little over-zealous and
keeps this menu transference up
even if there is a menu on the
non-main-form.

When any form gets a wm_SysCom-
mand indicating that a keystroke
was used to pull down a menu, it
immediately sends a cm_AppSysCom-
mand message to the Application
object. Application’s window pro-
cedure then sends the menu-invok-
ing keystroke to the main form
which causes the problem. Delphi
3 fixes this by only doing this redi-
rection if the original form has no
menu.

To stop the redirection, you
need to trap the cm_AppSysCommand

TMainForm = class(TForm)
...
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
private
 function DoAppMessage(var Msg: TMessage): Boolean;
end;
...
function TMainForm.DoAppMessage(var Msg: TMessage): Boolean;
begin
 Result := (Msg.Msg = cm_AppSysCommand)
{$ifndef CompletelyStopMenuRedirections}
 and (Screen.ActiveForm.Menu <> nil)
{$endif}
end;
procedure TMainForm.FormCreate(Sender: TObject);
begin
 Application.HookMainWindow(DoAppMessage);
end;
procedure TMainForm.FormDestroy(Sender: TObject);
begin
 Application.UnHookMainWindow(DoAppMessage);
end;

➤ Listing 1

unit MenuFix;
interface
implementation
uses SysUtils, Forms, Messages, Controls;
type
 TFixMyMenus = class
 private
 function DoAppMessage(var Msg: TMessage): Boolean;
 public
 constructor Create;
 destructor Destroy; override;
 end;
constructor TFixMyMenus.Create;
begin
 inherited Create;
 Application.HookMainWindow(DoAppMessage)
end;
destructor TFixMyMenus.Destroy;
begin
 Application.UnhookMainWindow(DoAppMessage);
 inherited Destroy
end;
function TFixMyMenus.DoAppMessage(var Msg: TMessage):
 Boolean;
begin
 Result := (Msg.Msg = cm_AppSysCommand)

{$ifndef CompletelyStopMenuRedirections}
 and (Screen.ActiveForm.Menu <> nil)
{$endif}
end;
const Obj: TFixMyMenus = nil;
procedure MyExitProc; far;
begin
 Obj.Free
end;
{$ifdef Ver80} {Delphi 1.0x}
 {$define DodgyMenus}
{$endif}
{$ifdef Ver90} {Delphi 2.0x}
 {$define DodgyMenus}
{$endif}
{$ifdef Ver93} {C++ Builder 1.0x}
 {$define DodgyMenus}
{$endif}
initialization
{$ifdef DodgyMenus}
 AddExitProc(MyExitProc);
 Obj := TFixMyMenus.Create
{$endif}
end.

➤ Listing 2

June 1997 The Delphi Magazine 53

and stop it getting to the Applica-
tion’s window procedure. If the
message was posted, we could use
Application’s OnMessage event.
However, since it is sent, we must
use HookMainWindow to trap it. This
requires a function method that
takes a TMessage record as a var
parameter and returns a Boolean. If
the return is True the message does
not get to Application, if the return
is False it does.

Listing 1 shows some code from
the main form unit (of the project
MenuFixP.Dpr in the Clinic\
Menus1 directory on the disk) that
sets such a routine up. Note that
there is some conditional compila-
tion going on. If the conditional
symbol CompletelyStopMenuRedire-
ctions is not defined (the default
situation) then the main form will
still pick up menu keystrokes if the
active form has no menu set up. If
you define the symbol, then the
application will function in a more
natural Windows-like way. That is,
the main form will never pick up
any other form’s keystrokes.

To help cater for already finished
applications and also to help peo-
ple with Borland C++ Builder, I have
supplied a second solution, which
is a self-contained unit that can

simply be added into a Delphi or
C++ project to remedy the problem
(Listing 2). This has the benefit that
(providing the source code is avail-
able) conditional symbols can en-
sure the code is only compiled for
the appropriate product versions
(ie not Delphi 3 or higher). The pro-
ject in the Menus2 subdirectory
from Clinic on this month’s disk
employs this solution, relieving the
main form of doing anything
special.

Drag And Drop Onto TMemo

QIn my application I need to
support drag and drop

where the target can be a TMemo.
When the user makes the drop, I
want to insert some text in the
memo at the point where the
mouse cursor is. How can I work
out where to insert the text when
all I have is an X and Y position?

AIt seems to me that there are
two ways of dealing with this

problem. One is rather tricky and
involves checking the font in the
memo, using the font’s metrics to
identify where to insert text, taking
into account multiple lines and
other complexities. The easier way

is to let the memo do all the hard
work. Bear in mind that when you
click on a memo, the input caret is
placed at the sensible and appro-
priate position. We can do a fake
mouse click when the user does the
drop and the same thing will hap-
pen. The MemoText.Dpr project on
this month’s disk shows this.
There is a label and a memo. You
can drag from the label into the
memo. The label’s caption gets in-
serted where the mouse was when
the drop occurred. Listing 3 shows
the relevant event handlers.

Splitter Question

QI am trying to use the new
Delphi 3 splitter component

in a certain way but am failing. I
have some controls set up with
splitters in between, rather like the
memos I have in the screen shot
(Figure 1). If I drag the first splitter
left, the second and third splitters
also move left by the same amount.
This means that the second and
third memos stay the same width,
but the fourth gets wider as shown
in my other screen-shot (Figure 2).
What I want is for the second and
third splitter to remain exactly
where they are, resulting in the sec-
ond memo getting larger, and the
third and fourth remaining the
same. Can this be done?

AIt can. Your project has been
saved on the disk as Splitter-

Problem.Dpr. Another one, Split-
terSolution.Dpr, does what you
want (see Figure 3). To set it up is
quite tricky to explain, but I’ll do
my best. If it ends up being difficult
to understand, load up the project
and view the main form as text
(Alt-F12).

procedure TForm1.Memo1DragOver(Sender, Source: TObject; X, Y: Integer;
 State: TDragState; var Accept: Boolean);
begin
 { Allow edit -> memo drag & drop }
 Accept := Source is TLabel
end;
procedure TForm1.Memo1DragDrop(Sender, Source: TObject; X, Y: Integer);
var
 Pt: TSmallPoint;
begin
 with Sender as TMemo do begin
 { Turn co-ordinates into a TSmallPoint }
 Pt := PointToSmallPoint(Point(X, Y));
 { Do a down click }
 Perform(wm_LButtonDown, 0, Longint(Pt));
 { Do an up click }
 Perform(wm_LButtonUp, 0, Longint(Pt));
 { The memo’s input caret is now nicely poised }
 { Insert the edit’s selected text into the memo }
 SelText := (Source as TLabel).Caption
 end
end;

➤ Listing 3

➤ Above Left: Figure 1

➤ Above Right: Figure 2

54 The Delphi Magazine Issue 22

Set down a master panel object
(Panel1) with whatever size or
alignment is required. Now put an-
other panel (Panel2) inside the first
one, about three quarters the size,
and set its Align property to alLeft.
Next, place a splitter next to Panel2
inside Panel1 also aligned to the left
and then a memo next to the split-
ter in Panel1, aligned to client (this
will be the rightmost memo). Now
we go through the same process in
Panel2. Place another panel
(Panel3) in Panel2, align it to the left.
Then place a splitter next to it,
aligned to the left and a memo next
to that, aligned to client. That
leaves two memos to go. Place one
memo in Panel3, aligned to the left,
then a splitter next to it aligned to
the left and finally the last memo
inside Panel3 aligned to client.

Once you get the idea, you can go
back and customise the panels and
splitters as required.

Generalised Minimising

QWhen you minimise the main
form of a Delphi application

(including Delphi itself) all visible
forms (including already mini-
mised ones) are shrunk down into
one application icon. When you
minimise a non-main form, it just
minimises as normal. I have rea-
sons for wanting all forms in my
Delphi project to act like the main
form when they are minimised.
This comes in handy for modal
forms which have minimise but-
tons on, given that other forms in
the project are disabled whilst a
modal one is being displayed. How
do I do this?

AThe way the main form does
its business is that when it is

minimised, it calls Application.-
Minimize. That hides all visible
forms and displays only one icon.
The fact that all forms are hidden
rather than minimised explains
why you don’t see the standard
Windows 95 or Windows NT anima-
tion that normally accompanies
minimising windows. The one icon
is the Application object’s window.

To achieve your goal, you will
need to make all other forms act
like the main form in this regard. In

Delphi 2 or 3 you can put the
required functionality into one
form and use form inheritance to
propagate it to all the others. In
Delphi 1 you will need to replicate
it through each non-main form.

Every form in question needs a
wm_SysCommand message handler to
trap the minimisation and call
Application.Minimize. An event
handler also needs to be set up for
the Application’s OnRestore han-
dler to ensure the appropriate
form is left with focus when the
program is restored from iconic
state.

A sample program that does this
is supplied as GenMin.Dpr. Listing
4 shows the main form with the
OnRestore handler and Listing 5 has
the non-main-form with its mes-
sage handler. Notice that the form
that was focused is stored in a
global variable in the GenVars unit,
defined as:
var MinForm: TForm = nil;

Query Execution Speed

QI have an SQL expression
that runs across Paradox ta-

bles. In Delphi 1 it took only a cou-
ple of seconds to execute. In Delphi
2 it takes about 40 seconds. This

slowdown is unacceptable, what
can I do about it?

AThe local SQL engine in the
16-bit BDE was implemented

on top of the QBE engine. SQL was
translated to QBE and then exe-
cuted. In the 32-bit BDE, SQL is
parsed and executed natively using
the new SQL interpreter. In many
cases, the performance is much the
same, but there are situations
where things take longer. Clearly
you have walked into one. From my
experience, I would recommend
changing your SQL query into QBE
and executing that instead. In Del-
phi 1, executing a .QBE file was no
more difficult than using a TTable
object and setting the TableName
property to point to it. Delphi 2
stops this undocumented support,
which makes things harder. You
can use third party components to
manipulate QBE files: InfoPower
has a QBE component that lets you
use parameters etc. The time I saw
the problem, executing the QBE file
gave performance similar to that
found in Delphi 1.

Acknowledgements
Thanks to Steve Axtell from
Borland’s European Technical
Team for help with some of this
issue’s entries.

➤ Figure 3

TForm2 = class(TForm)
private
 procedure WMSysCommand(
 var Msg: TWMSysCommand);
 message wm_SysCommand;
end;
...
procedure TForm2.WMSysCommand(
 var Msg: TWMSysCommand);
begin
 if Msg.CmdType and
 $FFF0 = sc_Icon then begin
 Application.Minimize;
 MinForm := Self
 end else
 inherited
end;

➤ Listing 5

TForm1 = class(TForm)
 procedure FormCreate(
 Sender: TObject);
private
 procedure DoRestore(
 Sender: TObject);
end;
...
procedure TForm1.DoRestore(
 Sender: TObject);
begin
 if Assigned(MinForm) then begin
 MinForm.BringToFront;
 MinForm := nil
 end
end;
procedure TForm1.FormCreate(
 Sender: TObject);
begin
 Application.OnRestore := DoRestore
end;

➤ Listing 4

56 The Delphi Magazine Issue 22

	SDI Menu Problems
	Drag And Drop Onto TMemo
	Splitter Question
	Generalised Minimising
	Query Execution Speed
	Acknowledgements

